Reliability of Spike Timing Is a General Property of Spiking Model Neurons

نویسندگان

  • Romain Brette
  • Emmanuel Guigon
چکیده

The responses of neurons to time-varying injected currents are reproducible on a trial-by-trial basis in vitro, but when a constant current is injected, small variances in interspike intervals across trials add up, eventually leading to a high variance in spike timing. It is unclear whether this difference is due to the nature of the input currents or the intrinsic properties of the neurons. Neuron responses can fail to be reproducible in two ways: dynamical noise can accumulate over time and lead to a desynchronization over trials, or several stable responses can exist, depending on the initial condition. Here we show, through simulations and theoretical considerations, that for a general class of spiking neuron models, which includes, in particular, the leaky integrate-and-fire model as well as nonlinear spiking models, aperiodic currents, contrary to periodic currents, induce reproducible responses, which are stable under noise, change in initial conditions and deterministic perturbations of the input. We provide a theoretical explanation for aperiodic currents that cross the threshold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.

Quantitative understanding of the dynamics of particular cell types when responding to complex, natural inputs is an important prerequisite for understanding the operation of the cortical network. Different types of inhibitory neurons are connected by electrical synapses to nearby neurons of the same type, enabling the formation of synchronized assemblies of neurons with distinct dynamical beha...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2003